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Abstract—In this paper, we propose a new method of micro-
phone array signal processing for detecting abnormal sounds
that is applicable to monitoring elderly people at home and can
be implemented on small equipment. This method consists of
noise reduction based on a subspace method and sound activity
detection (SAD), which is the same as voice activity detection
using the signal power. The performance of noise reduction
may degrade for underdetermined conditions (the number of
microphones is less than that of sound sources). To resolve this
issue, we previously proposed a technique of microphone array
signal processing that introduced virtual microphones. In this
method, signals of virtual microphones are interpolated with
those of real ones. By using both real and virtual microphones,
this noise reduction method can be applied for a critical /
overdetermined condition. In this paper, we apply this method
to the subspace method for the first time. After noise reduction,
the abnormal sounds can be detected by the SAD method. We
conducted an experiment and confirm that the proposed method
is effective for detecting abnormal sounds in noisy environments
and is robust to abnormal sound directions.

I. INTRODUCTION

Abnormal sound detection is an important task in surveil-

lance or monitoring. For instance, the detection of a voice

calling for help or the sound of broken glass at home will

contribute to the safety and security of elderly people living

alone. The detection of abnormal sounds is also useful for

finding problems with machines in a factory.

Abnormal sound detection can be straightforward in a

quiet environment. However, in many cases, the detection of

abnormal sounds must be carried out under the existence of

normal sound sources. For example, in a home environment,

the television may always be on and water may sometimes be

running in a kitchen, whereas in a factory, several machines

normally make sounds. An abnormal sound detection system

must be robust to such normal sound sources.

If the locations or directions of the normal sound sources

are fixed, spatial information is effective for distinguishing

between normal and abnormal sounds (e.g., [1]). A simple

way to detect abnormal sounds in such a case is to suppress all

known normal sound sources by null beamforming or adaptive

beamforming. Then, when an abnormal sound occurs in a

different direction from the normal sound sources, it can be

easily detected. However, this is only possible when there is a

sufficient number of microphones. If there are N normal sound

sources, we need (N+1) microphones to suppress all of them

in conventional array processing techniques. Because com-

monly used small recording devices such as IC recorders have

only stereo (two) channels, two-channel processing should be

more convenient.

If an abnormal sound is a human voice, it can be detected

accurately using the information that the sound is a human

voice such as its harmonic structure. Voice activity detection

(VAD) techniques have been subjected to extensive studies and

can be used to detect abnormal sounds. However, because an

abnormal sound is not always a human voice, we also have to

detect abnormal sounds such as the breaking of glass.

In this paper, we propose a new technique of signal pro-

cessing that combines noise reduction and sound activity

detection (SAD) with two microphones. This technique can

detect various abnormal sounds under the existence of normal

sounds. Noise reduction is based on a subspace method using

our previously proposed virtual microphone technique [2]–[4].

We expect to be able to effectively suppress the normal sounds

with two microphones. For SAD, we employ VAD using

signal power as a feature value to detect various abnormal

sounds. Hereafter, we refer the VAD as SAD. To evaluate the

performance of the proposed method, we conducted an ex-

periment simulating a system used to monitor elderly people.

We evaluate the performance and the robustness of abnormal

sound detection in normal sound environments.

II. NEW ABNORMAL SOUND DETECTION COMBINING

VIRTUAL MICROPHONE TECHNIQUE AND SUBSPACE-BASED

NOISE REDUCTION

A. Technical approach

There are four conditions that make the detection of abnor-

mal sounds complicated. 1) There are some interfering normal

sounds, 2) the direction of arrival (DOA) of abnormal sounds

is unknown, 3) the type of abnormal sound is also unknown

and 4) we can use only two microphones in small equipment.

In this paper, we apply a noise reduction technique to

resolve condition 1. Because of condition 2, we use the noise

reduction technique which does not require prior information

about abnormal sounds. After the noise reduction, to detect

target sounds (abnormal sounds) under condition 3, we apply

an SAD technique that does not use the information that the
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target sound is a human voice. Moreover, to satisfy condition

4, we use the noise reduction technique and SAD technique

which works effectively by using only two microphones.

In our proposed method, a microphone signal is modeled

in the short-time Fourier transform (STFT) domain. Here, let

xi(ω, t) be the ith real microphone signal (i = 1, 2) at angular

frequency ω in the tth frame. The amplitude of xi(ω, t) is

denoted as Ai = |xi(ω, t)| and the phase is denoted as φi =
̸ xi(ω, t).

B. Noise reduction using subspace method

In this paper, we use a subspace method as a noise reduction

technique that satisfies condition 2. Speech enhancement based

on a subspace method was proposed in [5], for example,

and the process is as follows. Although we focus on stereo

recording in this paper, we virtually increase the number of

channels as described later. Therefore, we here consider that

we have M channels as observation. When we have M chan-

nel input signal x (STFT domain), eigenvalue decomposition

is performed for the spatial correlation matrix R of the normal

sound period as prior training,

R = E[xxH ], (1)

Rei = λiei, (2)

where ei = (e1i, · · · , eMi)
T (i = 1, · · · ,M) denotes the

eigenvectors, λi denotes the eigenvalues, {·}T denotes the

transpose and {·}H is the Hermitian transpose. In the formu-

lation in this paper, we suppress the normal sounds to detect

abnormal sounds. Therefore, we obtain the spatial correlation

matrix of the normal sound period as prior information.

If we have more microphones than the number of sound

sources N (M > N), we obtain N dominant eigenvalues

and (M − N) non-dominant eigenvalues. The eigenvectors

corresponding to the dominant eigenvalues are the basis of

the signal subspace of the sound source contained in R, and

the other eigenvectors are orthogonal to the signal subspace.

Therefore, we project the observed signals to the non-dominant

eigenvectors end as

y = e
H
ndx, (3)

By projecting the observed signals to end, the normal sounds

are suppressed. Then, the abnormal sound included in the

observed signals is also projected to end. Although the abnor-

mal sound may contain some distortion, it is not suppressed

because end is not orthogonal to the signal subspace of the

abnormal sound.

This technique satisfies condition 2 because it requires no

prior information about the abnormal sounds. Under condition

4 (M = 2), however, the spatial correlation matrix of the

normal sounds period becomes a two-by-two matrix. Thus,

this technique can suppress only one normal sound. Generally,

(M − 1) sources can be suppressed using M microphones.

Therefore, we expand this technique to be applicable to N

sources using two microphones.
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Fig. 1: Microphone array signal processing with virtual in-

crease of channels

C. Application of virtual microphone technique to subspace

method

As a technique for realizing high speech enhancement

performance using only two microphones, we previously

proposed a virtual increase of channels based on virtual

microphone signals [2]–[4]. In this technique, we create ar-

bitrary channels of virtual microphone signals by using two

channels of real microphones. We perform microphone array

signal processing using microphone signals consisting of both

real and virtual microphone signals (Fig. 1). This technique

is applicable to various types of microphone array signal

processing since we generate virtual signals in the audio signal

domain, which is different from techniques in which signals

are generated in the power domain [6]–[8] or a higher-order

statistical domain [9], [10].

In this paper, the virtual microphone technique is applied

to subspace-based noise reduction for the first time. Note that

since this technique assumes W-disjoint orthogonality [11],

[12], mixture signals must be sparse. If they are not sparse, this

technique may fail to interpolate virtual microphones correctly

at many time-frequency bins, decreasing the performance of

signal processing.

A virtual microphone signal v(ω, t, α) is defined as the ob-

servation estimated at the point obtained by internally dividing

the line joining two real microphones in the ratio α : (1−α).
Hereafter, when there is no need to distinguish ω, t and α, the

signal is simply denoted as v. The virtual microphone signal v

is obtained by a nonlinear interpolation in each time-frequency

bin as follows. We derive the amplitude Av that minimizes the

sum σDβ
of the β-divergence between the amplitudes of a real

microphone signal and a virtual microphone signal weighted

by the virtual microphone interpolation parameter α,

σDβ
= (1− α)Dβ(Av, A1) + αDβ(Av, A2), (4)

Avβ = argminAv
σDβ

, (5)

where Dβ(Av, Ai) is defined as
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Dβ(Av, Ai) =

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+

A
β
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−
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i

β − 1
(otherwise).

(6)

By differentiating σDβ
with respect to Av and setting it to 0,

the interpolated amplitude extended using the β-divergence is

obtained as

Avβ =






exp ((1− α) logA1 + α logA2) (β = 1),
(

(1− α)Aβ−1

1
+ αA

β−1

2

)
1

β−1

(otherwise).

(7)

Note that Avβ is continuous at β = 1 because

Av1 = lim
β→1

(

(1− α)Aβ−1

1
+ αA

β−1

2

)
1

β−1

= exp ((1− α) logA1 + α logA2) , (8)

and this interpolation is equivalent to complex logarithmic

interpolation [2].

The phase φv of a virtual microphone signal v is interpo-

lated linearly in each time-frequency bin as

φv = (1− α)φ1 + αφ2, (9)

and this interpolation is valid when there is no spatial aliasing.

From (7) and (9), the virtual microphone signal v is repre-

sented as

v = Avβ exp (jφv). (10)

Using both real and virtual microphone signals as the inputs

for noise reduction based on the subspace method, high-

performance noise reduction is expected. What is important

in the subspace method in the proposed method is that

the eigenvector corresponding to the minimum eigenvalue is

orthogonal to the signal subspace. Even if the interpolation

by the virtual microphone technique is somewhat incorrect,

orthogonality is normally satisfied, this method is expected to

be effective.

D. Sound activity detection independent of the type of target

source

We apply an SAD technique to the output signal of noise

reduction based on the subspace method to detect abnormal

sounds. To satisfy condition 3, this SAD technique must be

applicable for various abnormal sounds. Therefore, we use a

signal power as a feature value. Using this feature value, if a

signal has power greater than a threshold, the signal is regarded

as an abnormal sound. Thus, it is possible to detect all sounds

in directions that are not suppressed by noise reduction as

abnormal sounds.

In addition, as a technique to improve the VAD perfor-

mance, the hang-over technique has been proposed [13], [14].

This method is based on the assumption that a voice continues

Television: 170°

(Voice) 

Electric fan: 110°

Radio: 30°

(music) 

Microphones

Elderly position 1: 60 °

2 m

Elderly

position 2: 140°

T60 = 1ʹͲ ms
Fig. 2: Layout of the simulated room

for a long time. Employing this assumption, a non-voice

period with a short duration detected between voice periods

is regarded as a voice period. In this paper, we also assume

that abnormal sounds will last for some time and we apply

the hang-over technique to SAD. Moreover, we assume that an

abnormal sound detected for a short period is a false detection,

and such a sound is regarded as a normal sound.

III. EXPERIMENT ON DETECTING ABNORMAL SOUNDS

In this paper, to evaluate the effectiveness of our proposed

method, we conducted an experiment using observed signals

that are convolutive mixtures of impulse responses simulated

by the Room Impulse Response (RIR) generator [15]. We

simulated an environment where an elderly person lives alone

and applied the proposed method to detect the voice of the

elderly person. This environment has three normal sounds,

which are classical music from a radio, electric fan noise and

a voice from a television (Fig. 2) with DOAs of 30◦, 110◦

and 170◦, respectively. As an abnormal sound, we simulated

the voice of the elderly person at two positions, position 1

and 2 with DOAs of 60◦ and 140◦, respectively. We used one

speech as the voice of the elderly person and “Winter” from

“The Four Seasons” by Vivaldi as the classical music and used

the electric fan noise from the JEIDA Noise Database [16].

Performance evaluation was carried out by comparing the

results of the proposed method and the following two methods:

applying SAD to the unprocessed signal and to the output

signal of a comparative noise reduction method. As the com-

parative method, we used a maximum signal-to-noise ratio

(SNR) beamformer (maxSNRbf) [17], [18] with the virtual

microphone technique [2]–[4]. This method requires the target-

active period and target-inactive period as prior information

for speech enhancement. In the abnormal sound detection,

the target signal is an abnormal sound. Thus, we need the

abnormal sound period as the target-active period and normal

sounds period as target-inactive period. This experiment was

performed for two directions of an abnormal sound.

For position 1 of the elderly person, we considered the case

where the DOA of the abnormal sound is known, that is, the

target-active period of the elderly person can be obtained as

prior information. In this case, we can expect both the maxS-

NRbf and the proposed method to work well. For position
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TABLE I: Experimental conditions

Number of real microphones 2

Number of virtual microphones 2 (α = 0.33, 0.67)

Distance between real microphones 4 cm

Reverberation time 120 ms

Input SNR -5 dB

Sampling rate 8 kHz

FFT frame length 512 samples

FFT frame shift 128 samples

Training period 10 s

Test period 20 s

The number of abnormal sound period 4 times

Length of abnormal sound period 8.1 seconds

2, we consider the case where the elderly person moves in a

different direction from that for position 1. In this case, the

maxSNRbf cannot obtain the target-active period because the

target DOA is unknown. Thus, the maxSNRbf has no choice

but to use the spatial filter produced for position 1, which

decreases the performance of noise reduction. On the other

hand, we can expect that our proposed method would work as

well as it does for position 1 because it does not require the

DOA of the abnormal sound.

A. Experimental conditions

The experimental conditions are shown in Table I. We used

two real microphones and interpolated two virtual microphone

signals at equal intervals. Thus, the microphone array we used

was composed of four microphones, two real and two virtual

microphones.

For the evaluation criteria, we used the false acceptance rate

(FAR) and false rejection rate (FRR), which are denoted as

FAR =
NFA

Nn

× 100 [%], (11)

FRR =
NFR

Ns

× 100 [%], (12)

where NFA, NFR, Ns and Nn are the number of normal sound

frames detected as abnormal sounds (false acceptances), the

number of abnormal sound frames detected as normal sounds

(false rejections), the total number of abnormal sound frames

(signals) and the total number of normal sound frames (noise),

respectively.

As the threshold used in SAD, we used the value satisfying

FAR ≃ FRR as an optimum value. In addition, we assumed

that abnormal sounds continue for at least 500 ms and applied

the hang-over technique. Also, when the period of the detected

abnormal sound was shorter than 250 ms, we considered it to

be a false detection and regarded it as a normal sound.

B. Results and discussion

Figure 3 shows the results of the experiment. In Figs. 3(a)

and (b), the first column shows the signal and the second

column shows the signal power. Also, the orange lines in the

second column represent the SAD results and the rising parts

of these lines are the periods detected as abnormal sounds. The

first row of Figs. 3(a) and (b) shows true abnormal sounds, that

TABLE II: FAR, FRR and thresholds in the experiment

Elderly position 1 FAR [%] FRR [%] Threshold

Unprocessed 21.0 27.4 0.185

maxSNRbf 6.1 1.7 0.1

Proposed 6.7 7.0 0.06

Elderly position 2 FAR [%] FRR [%] Threshold

Unprocessed 17.6 25.5 0.175

maxSNRbf 47.0 28.9 0.19

Proposed 6.4 8.9 0.035

is, the ground truth. The second row shows the unprocessed

signal, the third row shows the results for the maxSNRbf

and the last row shows the results for the proposed method.

Additionally, the values of FAR and FRR and the thresholds

are listed in Table II.

According to Fig. 3(a), both the maxSNRbf and the pro-

posed method work well. The accuracy of the SAD using

the maxSNRbf is very high; FAR is 6.1% and FRR is

1.7%, which are superior to those of the proposed method

of 6.7% and 7.0%, respectively. Since the maxSNRbf uses

prior information on the target, it can enhance the target sound

more clearly than the proposed method, which does not use

prior information. In contrast, the proposed method does not

constrain the gain of the target sound, therefore less noise

remains than in the output signal of the maxSNRbf. As a

result, the SAD using the maxSNRbf better performance than

the proposed method.

According to Fig. 3(b), the maxSNRbf failed in noise re-

duction because it used an incorrect spatial filter. In particular,

both FAR and FRR are higher than those for the unprocessed

signal. In contrast, the proposed method works well regardless

of the target DOA. We confirmed that the proposed method is

effective for detecting abnormal sounds under a normal sound

environment.

IV. CONCLUSIONS

In this paper, we have proposed a new method of micro-

phone array signal processing for detecting abnormal sounds

that is applicable to monitoring elderly people at home and

can be implemented with two microphones. This method

consists of two parts: noise reduction based on a subspace

method with virtual microphones and SAD using the signal

power. This noise reduction method does not require the

DOA of the abnormal sounds. However, it cannot suppress

normal sounds effectively in an underdetermined condition.

To resolve this issue, we used our previously proposed virtual

microphone technique. By applying SAD after noise reduction,

our proposed method was shown to be robust to noise and

the target DOA. To evaluate this technique, we conducted

an experiment simulating a system for monitoring an elderly

person living alone.

As a result, we confirmed that our proposed method is

effective for detecting abnormal sounds. Moreover, the result

showed the robustness of our proposed method to the target

DOA in noisy environments.
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(a) The DOA of the abnormal sound is 60◦
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(b) The DOA of the abnormal sound is 140◦

Fig. 3: Input signal at left microphone and the result of SAD for unprocessed signal and output signals of maximum SNR

beamformer and proposed method.
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