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Abstract—In this paper, we propose a novel approach to
virtually increasing the number of microphone elements between
two real microphones to improve speech enhancement perfor-
mance in underdetermined situations. The virtual microphone
technique, with which virtual signals in the audio signal domain
are estimated by linearly interpolating the phase and nonlinearly
interpolating the amplitude independently on the basis of β-
divergence, has been recently proposed and experimentally shown
to be effective in improving speech enhancement performance.
Furthermore, it has been reported that the performance tends to
improve as the nonlinearity is improved. However, one drawback
of this method is that the interpolation is employed in each
time-frequency bin independently, in which the spectral and
temporal structures of speech signals are ignored. To address
this problem and improve the nonlinearity, motivated by the
high capability of neural networks to model nonlinear functions
and speech spectrograms, in this paper, we propose an alternative
method of amplitude interpolation. In this method, we employ
a convolutional neural network as an amplitude estimator that
minimizes the mean squared error between the outputs of a
minimum power distortionless response (MPDR) beamformer
and the target speech signals. The experimental results revealed
that the proposed method showed high potential for improving
speech enhancement performance, which was not only superior
to that of the conventional virtual microphone technique but also
the performance in the corresponding determined situation.

I. INTRODUCTION

The technique of reducing undesirable noise while en-
hancing the target speech in recorded mixture signals, which
is referred to as speech enhancement, plays an important
role in many audio signal processing applications such as
automatic speech recognition [1]. Beamforming and blind
source separation (BSS) [2] are commonly used methods for
speech enhancement and can yield good performance as long
as a sufficient number of microphones are available, namely,
the number of microphones M equals or exceeds the number
of sound sources N (M ≥ N ) to suppress N−1 interferers by
null steering. Otherwise, the performance of speech enhance-
ment tends to decrease considerably. However, commonly used
small recording devices such as voice recorders often have
only two microphones, which is insufficient to meet the deter-
mined condition. To achieve satisfactory speech enhancement
performance with such devices having a small microphone
array, many methods have been proposed to enhance speech in
underdetermined situations (M < N) such as time-frequency
masking [3]–[5], multichannel Wiener filtering [6], [7], and
nonnegative matrix factorization (NMF) [8]–[10]. Although
these methods are noteworthy in that they can significantly
improve speech intelligibility in underdetermined situations,
there is a tradeoff between low signal distortion and high noise
reduction performance.
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Fig. 1. Microphone array signal processing with virtual microphone technique

On the other hand, the virtual microphone technique [11]
allows the well-studied methods for determined situations
(M = N ) to be applied to signals recorded in underdetermined
situations by virtually increasing the number of channels.
As shown in Fig. 1, with two real microphone signals x1

and x2, the virtual microphone technique is used to estimate
the observed signal vi at a position where there is no real
microphone placed by interpolating the phase and amplitude
independently. Note that since the virtual microphone signals
are generated in the audio signal domain, this technique can be
applied to not only speech enhancement but also other types
of signal processing [12], which is different from techniques
in which signals are generated in the power domain [13]–[15]
or a higher-order statistical domain [16].

In the virtual microphone technique, on the basis of the W-
disjoint orthogonality (W-DO) [3], [17] assumption, phases
of virtual signals can be obtained using linear interpola-
tion by approximately modeling propagating waves as plane
waves. For amplitude estimation, since modeling the ampli-
tudes of propagating waves is difficult owing to the compli-
cated acoustic environment, complex logarithmic interpolation
and a generalized version, where the interpolation rules are
derived as closed-form solutions of an optimization prob-
lem formulated using β-divergence, have been proposed and
experimentally shown to be effective in improving speech
enhancement performance using a maximum signal-to-noise
ratio (MaxSNR) beamformer. Furthermore, the results reported
in [11] indicated that speech enhancement performance tends
to increase when the improved nonlinearity is applied to am-
plitude interpolation. However, one drawback of this method
is that the interpolation is applied in each time-frequency bin
independently, in which the spectral and temporal structures
of speech signals are ignored.
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To overcome this drawback and improve the nonlinearity
of amplitude generation, motivated by the high capability of
neural networks to model nonlinear functions and speech spec-
trograms, in this paper, we propose the use of convolutional
neural networks (CNNs) to learn the rules for estimating am-
plitudes of virtual signals. Specifically, the proposed method
trains a CNN to estimate a virtual signal that can minimize
the mean squared error of the outputs of a minimum power
distortionless response (MPDR) beamformer and the target
speech signals. Note that this is another merit of replacing
the ad hoc interpolation rules with rules learned in a data-
driven manner, namely, it allows a complicated model to be
learned with a loss function that is easy to formulate or is
task-dependent.

II. RULE-BASED VIRTUAL MICROPHONE TECHNIQUE

We model the microphone signals in the short-time Fourier
transform (STFT) domain. Here, let xm(ω, t) be the mth
real microphone signal (m = 1, 2) at angular frequency
ω in the tth time frame. The amplitudes of these signals
are denoted as Am(ω, t) = |xm(ω, t)| and the phases are
denoted as ϕm(ω, t) = ∠xm(ω, t). A virtual microphone
signal v(ω, t, α, β) is defined as the observation estimated at
the point obtained by internally dividing the line joining two
real microphones in the ratio α : (1 − α) (see Fig. 1). Here,
β is the hyperparameter of β-divergence, which controls the
nonlinearity of amplitude interpolation. Hereafter, when there
is no need to distinguish ω, t, α, or β, the signal is simply
denoted as v.

To interpolate a virtual microphone signal, we need to define
the distance between the real and virtual microphones on the
basis of an appropriate model that is extremely complex. To
simplify the model, we here consider the models for phase and
amplitude interpolation separately. Additionally, interpolating
the phase and amplitude separately introduces nonlinearity into
virtual signal generation, which is necessary to increase the
number of channels.

A. Phase interpolation based on plane wave model
We assume W-DO [3], [17] for mixed signals, that is,

each time-frequency bin is dominated by at most one sound
source. Then, the observed signal in each time-frequency
bin can be regarded as a single wave. On the basis of this
assumption, the physical model of propagating waves can then
be approximated as that of a plane wave. The phase ϕv of a
virtual microphone signal v can then be interpolated linearly
on the basis of the model as

ϕv = (1− α)ϕ1 + αϕ2. (1)

Since the observed phase has an aliasing ambiguity given by
ϕi±2niπ with integer ni, this interpolation requires no spatial
aliasing, that is,

|ϕ1 − ϕ2| ≤ π. (2)

B. Amplitude interpolation based on β-divergence
Since there are many acoustic conditions such as the dis-

tance between the sound sources and microphones and the
directions of arrival (DOAs), it is difficult to faithfully model
the amplitude of a propagating wave. Thus, instead of some

physical assumptions, we utilize β-divergence as an adjustable
measure of distance to quantify the distance between the real
and virtual microphones.

The β-divergence between the amplitude of the virtual
microphone Av and that of the ith real microphone Ai is
defined as

Dβ(Av, Ai) =
Av(logAv − logAi) + (Ai −Av) (β = 1),
Av

Ai
− log

Av

Ai
− 1 (β = 0),

Aβ
v

β(β − 1)
+

Aβ
i

β
−

AvA
β−1
i

β − 1
(otherwise),

(3)

where Dβ(Av, Ai) is continuous at β = 0 and β = 1.
Then, we derive the interpolation rule of the amplitude Av

that minimizes σDβ
, the sum of Dβ(Av, Ai) weighted by

the hyperparameter of the virtual microphone interpolation α,
which indicates the position of the virtual microphone,

σDβ
= (1− α)Dβ(Av, A1) + αDβ(Av, A2), (4)

Avβ = argminAv
σDβ

. (5)

By differentiating σDβ
with respect to Av and setting it to 0,

the interpolated amplitude is obtained as

Avβ =exp ((1− α) logA1 + α logA2) (β = 1),(
(1− α)Aβ−1

1 + αAβ−1
2

) 1
β−1

(otherwise).

(6)

Note that Avβ is continuous at β = 1 and this interpolation
is equivalent to complex logarithmic interpolation [18] with
β = 1.

From the above, the virtual microphone signal v is repre-
sented as

v = Avβ exp (jϕv). (7)

Note that the phase can be interpolated with arbitrary real
numbers α, whereas the amplitude interpolation is defined only
in the domain of 0 ≤ α ≤ 1 when β ̸= 1. The extrapolation
of a virtual microphone in the domain α < 0, 1 < α was
considered in [12].

III. PROPOSED METHOD: CNN-BASED AMPLITUDE
ESTIMATION FOR MPDR BEAMFORMER

The effectiveness of the virtual microphone technique in
improving speech enhancement performance using a MaxSNR
beamformer has been confirmed in [11]. According to the
experimental results in [11], the performance improvement
tends to increase when a larger β is used for amplitude
interpolation, which indicated the importance of the nonlin-
earity in generating a virtual signal. However, with the virtual
microphone technique, the amplitude is estimated in each time-
frequency bin independently, in which the structure of speech
signals is ignored. To further improve the nonlinearity for
amplitude interpolation and estimate the amplitude by taking
account of all the observed time-frequency bins, in this paper,
we introduce the use of a CNN as an alternative means of
amplitude estimation (see Fig. 2). Furthermore, learning the
rules in a data-driven manner facilitates the modeling process
and allows the use of task-dependent loss functions.
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Fig. 2. Flowchart of proposed method

A. Loss function with MPDR beamformer
In this paper, we introduce a task-dependent loss function

that forces the generated amplitude to become optimal for
constructing an MPDR beamformer [19] and minimizes the
mean squared error between the output of the beamformer and
the target signal s(ω, t). For the observed signal consisting
of two real and I virtual microphone signals x(ω, t) =
[x1(ω, t), v1(ω, t), · · · , vI(ω, t), x2(ω, t)]

T, an MPDR beam-
former enhances the source of interest by

y(ω, t) = wH(ω)x(ω, t), (8)

w(ω) = [w1(ω) · · ·wM (ω)]
T
, (9)

where y(ω, t) denotes the output signal of the beamformer,
w(ω) the spatial filter vector, (·)T the transpose, and (·)H the
Hermitian transpose. The spatial filter w(ω) is given as

w(ω) =
Φ(ω)−1a(ω)

aH(ω)Φ(ω)−1a(ω)
, (10)

Φ(ω) = E[x(ω, t)x(ω, t)H], (11)

which is a well-known closed-form solution of the optimiza-
tion problem

J =∑
ω

{
E
[
|wH(ω)x(ω, t)|2

]
+ 2Re[λ∗(wH(ω)a(ω)− 1)]

}
,

(12)

which is derived using the method of Lagrange multipliers.
Here, E[·] is the expectation operator, Re[·] takes the real part
of the input argument, λ∗ is the complex-valued Lagrange
multiplier, and a(ω) is the relative transfer function (RTF) of
the target, which is defined as the ratio of the acoustic transfer
functions h(ω) = [h1(ω) · · ·hM (ω)]

T from the target source

to the microphone array, i.e., a(ω) =
[
1 h2(ω)

h1(ω) · · · hM (ω)
h1(ω)

]T
.

The training loss function of the CNN can then be written as

Jc =
∑
ω

E
[
|wH(ω)x(ω, t)− s(ω, t)|2

]
. (13)

B. Network architecture design
The network architecture employed in the proposed method

is designed by considering the following two aspects: 1) ampli-
tude spectrograms of speech signals show region dependence,
i.e., they have different frequency structures in voiced and

Fig. 3. Network architectures used for amplitude estimation. The inputs
and outputs are 1D data, where the frequency dimension of spectrograms is
regarded as the channel dimension. “w”, “c”, “k” and “d” denote the width,
channel number, kernel size, and dilation factor, respectively. “Conv”, “BN”
and “GLU” denote 1D convolution, batch normalization, and gated linear unit,
respectively.

unvoiced segments; 2) the entire amplitude spectrogram should
be estimated by taking all the observed time-frequency bins
as a cue, which means a large receptive field is required.

We use gated CNNs [20], which were originally intro-
duced to model word sequences for language modeling and
were shown to outperform long short-term memory (LSTM)-
based language models trained in a similar setting. Similar
to LSTMs, the gating mechanism of gated CNNs allows
a network to learn what information should be propagated
through the hierarchy of layers. There are some attempts have
been made to adopt CNNs into beamforming techniques. In
[21], time-frequency masks for the target and noise signals
are estimated with a CNN so that the power spectral density
matrices for conducting beamforming can be obtained using
the masked signals.

In the gated CNN, by using Hl−1 to denote the output of
the (l − 1)th layer, the output of the lth layer Hl of a gated
CNN can be written as

Hl = (Hl−1 ∗Wf
l + bfl)⊗ σ(Hl−1 ∗Wg

l + bgl ), (14)

where Wf
l and Wg

l are the weight parameters and bfl and bgl
are the bias parameters of the lth layer, respectively, ⊗ denotes
element-wise multiplication and σ is the sigmoid function.
The main difference between a gated CNN and a regular
CNN layer is that a gated linear unit (GLU), namely, the
second term of (14), is used as a nonlinear activation function
instead of tanh activation or regular rectified linear units
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(ReLUs) [22]. Similar to LSTMs, GLUs are data-driven gates,
which control the information passed on in the hierarchy. This
particular mechanism allows us to capture long-range context
dependences efficiently without encountering the vanishing
gradient problem. We also employ a one-dimensional (1D)
CNN and dilated convolution to capture long-term contextual
dependences. With 1D convolution models, the frequency
dimension is regarded as the channel dimension and an input
spectrogram is convolved with a (1, kT ) filter so that the
features extracted in the low-level layers can take into account
all the frequency bins, where kT is the filter width in the
time dimension. Dilated convolution [23] is another effective
approach whereby CNNs can capture wider receptive fields
with fewer layers by convolving a larger filter derived from
the original filter with dilating zeros, namely, the original filter
is applied by skipping certain elements in the input. Note that
the network is designed to be fully convolutional so that inputs
having arbitrary lengths can be handled. The details of the
network used in experiments are shown in Fig. 3.

IV. EVALUATION EXPERIMENTS

To evaluate the effect of the proposed method, we conducted
experiments designed to compare the speech enhancement
performance with the MPDR beamformer among the cases
of using two real microphones, two real microphones and one
virtual microphone signal estimated by the proposed method
or the conventional method, and three real microphones.

A. Experimental conditions

We prepared two datasets for the closed test (dataset 1) and
open test (dataset 2). Dataset 1 consisted of three speakers and
the audio files for each speaker were one minute long, which
were used to generate mixture signals. Dataset 2 comprised 10
speakers excerpted from the Wall Street Journal (WSJ0) corpus
and the audio files for each speaker were about 18 minutes
long, where randomly selected half of them (9 minutes) was
used as the training set and the others (9 minutes) served as the
test set. The mixture signals, consisting of a target speech and
two interferers, were generated by adding each audio signal of
the target speaker to all the paired combinations from the other
nine speakers. Therefore, the training dataset included four
hours of data in total. For both datasets, the observed signals
were convolutive mixtures of impulse responses simulated by
a room impulse response generator [24]. The experimental
conditions are listed in Table I. The DOA of the target speech
was set to 90◦, and those of the interferers were set to 50◦

and 150◦ with a reverberation time of 120 ms.
We used the exact RTF for all the methods. The RTF at

the position of a virtual microphone is estimated using the
conventional virtual microphone technique. For the proposed
method, the RTF can also be estimated using a neural network,
which is one direction of future work. We used signal-to-
distortion ratio (SDR), signal-to-interference ratio (SIR), and
signal-to-artifacts ratio (SAR) as the objective criteria for
quantifying the speech enhancement performance. A concise
representation of the results was obtained by averaging these
criteria over the test dataset. Here, the reference signal was the
source image, i.e., the noise-free reverberant speech signal.

TABLE I
EXPERIMENTAL CONDITIONS

Number of real microphones M 2 or 3
Number of sound sources N 3
Distance between microphones 4 cm (M = 2), 2 cm (M = 3)
Reverberation time 120 ms
Sampling rate 8 kHz
Input SNR 0 dB
Window length / shift 1024 / 512 samples

TABLE II
EXPERIMENTAL RESULTS

Closed Test
conditions SDR SIR SAR
2 real mic 1.7960 2.3456 13.4448
2 real mic + 1 vir mic (conv.) 5.9321 8.4432 10.2255
2 real mic + 1 vir mic (prop.) 11.6489 19.6029 12.4629
3 real mic 8.1513 12.9107 10.1648

Open Test
conditions SDR SIR SAR
2 real mic 2.1939 2.8624 12.6560
2 real mic + 1 vir mic (conv.) 5.9698 8.5820 10.0593
2 real mic + 1 vir mic (prop.) 5.3579 15.5531 5.9356
3 real mic 16.1139 19.5216 18.8855

B. Results and discussion

The SDR, SIR, and SAR are shown in Table II for each
dataset. Since the MPDR beamformer with two real micro-
phones can suppress only one interferer in each frequency
bin, it is natural that the beamformer failed to enhance
speech in underdetermined situations. By using an additional
virtual microphone signal estimated by the conventional virtual
microphone technique, an improvement of about 4 dB was
obtained in terms of SDR, which showed the effectiveness of
virtual signals in speech enhancement.

In the closed test, the proposed method achieved a major im-
provement in all the criteria and even outperformed the method
that used three observed signals (i.e., determined situations).
The improvements were about 10 dB and 17 dB in terms of
SDR and SIR, respectively. These results are interesting in that
they reveal not only the high potential of the proposed method
to improve the performance of the conventional method, but
also the fact that the optimal amplitude for constructing an
MPDR beamformer is not equivalent to the observed one. Fig.
4 shows an example of an amplitude spectrogram estimated
by the proposed method and Figs. 5 and 6 show the enhanced
speech signals. However, the performance of the proposed
method decreased significantly in the open test, in which SAR
was lower than that in the underdetermined situations (two real
microphones). Since the estimated virtual signals have nonlin-
ear noise, the output signal computed by linear transformation
of a concatenated input signal also contains some artifacts. One
possible reason is that the model trained with dataset 2 was
not generalized well enough to generate amplitudes for all the
unseen data, which generated virtual signals including high-
level artifacts. To improve the generalization of the model,
a larger dataset and an appropriate network architecture are
needed, which is another direction of future work.

From the above, we concluded that the proposed method has
the potential to improve the conventional virtual microphone
technique and even outperform the MPDR beamformer for
determined situations in terms of speech enhancement perfor-
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Fig. 4. Amplitude spectrogram of one of the observed two-channel mixture
signals (left) and one estimated using proposed method in closed test (right).

Fig. 5. Target speech signal (left) and signal enhanced using two real
microphones (right).

Fig. 6. Speech signals enhanced using two real microphones and one virtual
microphone signal estimated by conventional (left) and proposed (right)
methods.

mance when the model is trained to be well generalized.

V. CONCLUSIONS

In this paper, we proposed an alternative method in which
a CNN is used as an estimator of the amplitude of a virtual
signal, which aims to improve speech enhancement perfor-
mance in underdetermined situations. The CNN is trained
with a task-dependent loss function that minimizes the mean
squared error between the output of an MPDR beamformer
and the target speech signal so that the estimated amplitudes
could be optimal for constructing an MPDR beamformer. An
experiment conducted that involved a closed test showed that
the proposed method can potentially improve the conventional
method of speech enhancement in underdetermined situations
and even outperform other methods for determined situations
by using the generated amplitudes specialized for the MPDR
beamformer instead of the observed one.
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