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ABSTRACT
In this paper, we present a speech enhancement method us-
ing two microphones in underdetermined situations. Time-
frequency (TF) binary masking is a conventional method of
enhancing speech in underdetermined situations by appropri-
ately multiplying each TF component by zero or one. Extend-
ing this method, we previously proposed a new method called
the time-frequency-bin-wise switching (TFS) beamformer. In
this method, we switch multiple preconstructed beamformers
in each TF bin, each of which suppresses a particular inter-
ferer. However, this method requires the pre-estimation of
beamformer filter coefficients using the target-active period
and interferer-wise-active periods as the prior information.
In this paper, to overcome this limitation, we formulate the
switching and construction of spatial filters as a joint opti-
mization problem, which can be understood from two view-
points: the clustering of the most dominant interferer signal in
each TF bin and the construction of a minimum variance dis-
tortionless response beamformer using such bins. In an exper-
iment, we confirmed that the proposed method was superior
to conventional TF masking and fixed beamforming during
speech enhancement regardless of the direction of interferers.

Index Terms— beamforming, time-frequency masking,
speech enhancement, underdetermined situation, nonlinear
signal processing

1. INTRODUCTION

Beamforming and blind source separation [1] are commonly
used in speech enhancement and can yield a good perfor-
mance as long as a sufficient number of microphones are
available. Automatic speech recognition can be improved by
applying these methods (e.g., [2]). However, the capability of
these microphone array methods to suppress multiple interfer-
ers depends on the number of microphones M . If there are N
sound sources consisting of a target and N −1 interferers, we
need the same number of microphones (M = N ) to suppress
all interferers by null steering. However, commonly-used
small recording devices such as voice recorders and smart-
phones often have only two microphones. Although several
conventional methods such as time-frequency (TF) mask-
ing [3,4], multichannel Wiener filtering [5], and the statistical
modeling of observations using latent variables [6] can work
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well in underdetermined situations (M < N ), they face a
tradeoff between low signal distortion and high noise reduc-
tion performance. Therefore, the purpose of this study is to
develop a new method of underdetermined speech enhance-
ment realizing high performance with low signal distortion.

We have proposed the time-frequency-bin-wise switch-
ing (TFS) beamformer [7] as an extension of conventional
speech enhancement based on TF binary masking, which uses
multiple preconstructed beamformers. If M microphones are
available, a single beamformer can generally form M − 1
nulls. This means that a single beamformer can suppress only
one interferer in a two-microphone case. However, if we can
construct N − 1 beamformers, each suppressing one of the
N − 1 interferers, we can improve the speech enhancement
performance by using a combination of these beamformers
rather than a single beamformer. On the basis of this idea, this
method enhances speech by multiplying by the best beam-
former filter to suppress interferers in each TF bin rather than
multiplying by a scalar as in TF masking.

In [8], the combination of multiple beamformers with dif-
ferent steering directions for audio zooming was considered.
However, in this study, we combine multiple beamformers
with the same steering direction (the same target) but dif-
ferent null directions. Speech enhancement by Wiener fil-
tering and the frequency-bin-wise combination of multiple
fixed null beamformers using a square microphone array was
proposed in [9, 10]. However, this method tends to distort
the target signal. The reduction of mechanical noise, such
as the sound of actuators in a robot, by selecting the most
suitable noise covariance matrix in each TF bin to compute
maximum signal-to-noise ratio (MaxSNR) beamformers has
also been proposed [11]. This method requires the cluster-
ing of multichannel mechanical noise covariance matrices in
a training phase under the assumption that the number of ac-
tuator patterns is usually limited. In contrast to the methods
presented above, we switch multiple signal-dependent beam-
formers, such as minimum variance distortionless response
(MVDR) beamformers [12, 13], in each TF bin for underde-
termined speech enhancement without target distortion.

In this paper, we propose an MVDR beamformer-based
TFS beamformer that requires the same prior information as
a conventional MVDR beamformer, i.e., the relative transfer
function (RTF) of the target source, whereas we previously
proposed a TFS beamformer [7] that had the limitations of re-
quiring the target-active period and interferer-wise-active pe-
riods. In our proposed method, we formulate the selection
of the best beamformer and the construction of MVDR filters
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as a joint optimization problem. This method can suppress
N − 1 interferers in the TF plane in underdetermined situa-
tions by assuming that there are M − 1 interferers in a TF bin
rather than W-disjoint orthogonality (W-DO) [3, 14].

2. CONVENTIONAL MVDR BEAMFORMER

We model the microphone signals in the short-time Fourier
transform (STFT) domain. Here, let xi(ω, t) be the ith micro-
phone signal at the angular frequency ω in the tth time frame.
When M microphones observe one target and N − 1 interfer-
ers in determined situations (M = N), we can perform con-
ventional speech enhancement using an MVDR beamformer
[12, 13], which steers a spatial null in the direction of an in-
terferer, as described by

y(ω, t) = wH(ω)x(ω, t), (1)

x(ω, t) = [x1(ω, t) · · ·xM (ω, t)]
T
, (2)

w(ω) = [w1(ω) · · ·wM (ω)]
T
, (3)

where y(ω, t) is the output signal of the beamformer, w(ω)
denotes the spatial filter vector, (·)T denotes the transpose,
and (·)H denotes the Hermitian transpose. The filter w(ω) is
constructed by solving the following optimization problem:

min
w

∑
ω

E
[
|wH(ω)x(ω, t)|2

]
s.t. wH(ω)a(ω) = 1, (4)

where E[·] is the expectation operator and a(ω) is the RTF
of target, which is defined as the ratio of the acoustic transfer
functions h(ω) = [h1(ω) · · ·hM (ω)]

T from the target source
to the microphone array.

a(ω) =

[
1

h2(ω)

h1(ω)
· · · hM (ω)

h1(ω)

]T
(5)

The cost function Jc is

Jc =∑
ω

{
E
[
|wH(ω)x(ω, t)|2

]
+ 2Re[λ∗(wH(ω)a(ω)− 1)]

}
,

(6)

where Re[·] takes the real part of the input argument, and λ∗

is the complex-valued Lagrange multiplier in the method of
the Lagrange multiplier. The closed-form solution is

w(ω) =
Φ(ω)−1a(ω)

aH(ω)Φ(ω)−1a(ω)
, (7)

Φ(ω) = E[x(ω, t)x(ω, t)H]. (8)

The MVDR beamformer can enhance the target signal with a
distortionless response. However, only M − 1 interferers can
be suppressed, and thus the performance may be degraded in
an underdetermined situation with M < N . Here, note that
when x is composed of only interferers, the beamforming is
called MVDR beamformer, and when it includes the target,
the beamforming is called the minimum power distortionless
response (MPDR) beamformer. The MVDR beamformers
that we used for the proposed method in the following can

Target

Interferer 1 Interferer 2

Fig. 1: Combination of two beamformers with a spatial null
for each interferer in a situation with M = 2 and N = 3

be replaced by MPDR beamformers.

3. TFS OF MVDR BEAMFORMERS

3.1. Conventional TFS beamformers

Without loss of generality, we consider a situation with M =
2 microphones and N = 3 sound sources consisting of a tar-
get signal and interferer signals 1 and 2. In this situation, we
cannot construct a null beamformer that suppresses both in-
terferers. Here, if only the target and interferer k are observed
(k = 1, 2), we can construct the beamformer k with a spatial
filter wk that suppresses only the interferer k (see Fig. 1).
Then, we obtain the following two output signals yk(ω, t)
from the observation x(ω, t) consisting of three sources:

yk(ω, t) = wH
k (ω)x(ω, t). (9)

Then, we perform speech enhancement as follows:

y(ω, t) =

{
y1(ω, t) if |y1(ω, t)| ≤ |y2(ω, t)|,
y2(ω, t) otherwise.

(10)

This means that we choose the best spatial filter to suppress
interferers in each TF bin, which we call the TFS technique.
We refer to this selection rule as the minimum value selection
(MIN), and this beamformer as the TFS beamformer.

When we have the precise RTF, the powers of the target in
|yk(ω, t)| ideally match owing to the constraint in (4). There-
fore, the comparison of |yk| is equal to that of the powers of
interferers. The power of y composed of yk(ω, t), which has
minimum power, is thus minimum. In accordance with the
above theory, this method requires the precise RTF, which
is the key problem as in the other speech enhancement tech-
niques.

This method has several advantages: 1) We can use any
conventional beamformer to construct the spatial filter, e.g., a
MaxSNR beamformer [12, 15]. 2) W-DO between interferers
is required instead of that between the target and the interfer-
ers, that is, this method relaxes the limitation of conventional
TF masking assuming W-DO. 3) No target distortion due to
the TFS of beamformers occurs if we use appropriate beam-
formers such as the MVDR beamformer. Here, if both the
magnitude and phase of the output signal of all beamformers
match, the beamformers can be considered to be appropriate.

In [7], we concluded that the TFS of the MVDR beam-
former shows good speech enhancement performance. How-
ever, since this method requires the pre-estimation of each
spatial filter, the target-active period and interferer-k-active
periods are required separately as the prior information. This
severely limits the practicality in acoustic environments.
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3.2. Proposed TFS of MVDR beamformer

Although one of the advantages of the TFS beamformer is
the availability of an arbitrary beamforming technique, we
here focus on the MVDR beamformer. By reformulating the
TFS technique and MVDR beamformer as a joint optimiza-
tion problem, we can overcome the serious limitation of the
conventional TFS beamformer.

Without loss of generality, we consider a two-microphone
case (M = 2). The optimization problem of the MVDR
beamformer based on the TFS technique is

min
w,m

K∑
k=1

∑
ω

E
[
|mk(ω, t)w

H
k (ω)x(ω, t)|2

]
s.t. wH

k (ω)a(ω) = 1, (11)

where K = N−1 is the number of spatial filters and mk(ω, t)
is a TF binary mask that takes a value of one if wk(ω) is used
and zero otherwise. Note that if N = 2 and, thus, K = 1 (i.e.,
a determined case), this optimization problem is equal to the
conventional one in (4). Using the method of the Lagrange
multiplier, we obtain the cost function Jp as

Jp =

K∑
k=1

∑
ω

{
E
[
|mk(ω, t)w

H
k (ω)x(ω, t)|2

]}
{
+ 2Re[λ∗

k(w
H
k (ω)a(ω)− 1)]

}
, (12)

where λ∗
k is the kth complex-valued Lagrange multiplier.

Since the minimization of Jp is a joint optimization problem,
it is difficult to optimize both wk and mk simultaneously,
whereas it is straightforward to optimize them alternately.

With wk fixed, the cost function regarding mk is

Jp(mk) =

K∑
k=1

∑
ω

E
[
|mk(ω, t)w

H
k (ω)x(ω, t)|2

]
. (13)

Thus,

mk(ω, t) =

{
1 if |wH

k (ω)x(ω, t)|2 ≤ |wH
k′(ω)x(ω, t)|2

0 otherwise, (14)

where k′ = 1, . . . ,K and k′ ̸= k. This optimization means
that we choose the best spatial filter in each TF bin; that is,
we perform TFS of the MVDR beamformer.

Next, with mk fixed, the cost function regarding wk is
equal to (12), that is, Jp(wk) = Jp. Focusing on the TF
bins where the kth filter is used (i.e., mk(ω, t) = 1), Jp(wk)
is equal to the conventional one (6); thus, this optimization
problem has the following closed-form solution:

wk(ω) =
Φk(ω)

−1a(ω)

aH(ω)Φk(ω)−1a(ω)
, (15)

Φk(ω) = E
[
(mk(ω, t)x(ω, t)) (mk(ω, t)x(ω, t))

H
]
. (16)

Using the above equations, we iteratively update wk and mk.
For the initialization, wk or mk can be computed by con-
ventionally constructing a spatial filter, such as a null beam-
former [12], or a TF mask, such as a degenerate unmixing es-

Table 1: Experimental conditions
Number of microphones M 2
Number of sound sources N 3 or 4
Distance between microphones 4 cm
Reverberation time 300 ms
Sampling rate 8 kHz
FFT frame length / shift 1024 / 256 samples
Test period 5 s

timation technique (DUET) [16], respectively. We can avoid
the permutation problem by using an initial value, that is, fil-
ter wk suppresses interferer k in every frequency bin, whereas
this does not hold when we use a random value. Finally,
speech enhancement is performed using

yk(ω, t) = mk(ω, t)w
H
k (ω)x(ω, t), (17)

y(ω, t) =

K∑
k=1

yk(ω, t), (18)

where yk ideally contains a part of the target and only the kth
interferer is suppressed by wk, and y contains the completely
restored target and suppressed interferers. Note again that all
of the formulas presented above, including the computation
of a spatial filter (15) and an enhanced signal (17) (18), are in
complete agreement with those for the conventional MVDR
beamformer in the determined situation.

This joint optimization problem can be understood from
two viewpoints: the clustering of the most dominant inter-
ferer in each TF bin, which is the computation of mk, and the
construction of a MVDR beamformer wk using such bins.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

To evaluate the effectiveness of our proposed method, we con-
ducted an experiment using observed signals that are convo-
lutive mixtures of impulse responses simulated by a room im-
pulse response generator [17]. The experimental conditions
are listed in Table 1.

We evaluated the performance of our proposed method by
comparing with the results of the following three conventional
methods: MVDR, which is underdetermined speech enhance-
ment with a single MVDR beamformer; DUET [16] as an
example of TF binary masking with a stereo microphone; and
the conventional TFS beamformer previously proposed in [7].
Here, we combined the MVDR beamformer by MIN (see
(10)). This method requires the RTF from the target source
to the microphones and interferer-wise-active periods.

For the proposed method, we used the same RTF and a
null beamformer [12] to initialize the spatial filters wk, which
enhances the target and steers a spatial null in a random direc-
tion. We set the interval of the random direction to be at least
20◦ and evaluated five different initial directions of null steer-
ing. We updated mk and wk ten times iteratively using (14)
and (15), respectively.

To verify the effectiveness of the proposed method, we
prepared six interferers A to F, whose directions of arrival
(DOAs) were 20◦, 40◦, 60◦, 110◦, 130◦, and 150◦, respec-
tively. We used nine combinations consisting of one interferer
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Table 2: Results of speech enhancement for different noise sets (A, 20◦; B, 40◦; C, 60◦; D, 110◦; E, 130◦; F, 150◦). TFS w/o
PE, Proposed TFS-MVDR without pre-estimation (PE) of beamformer; TFS w/ PE, Conventional TFS-MVDR with PE

(a) SDR improvement [dB]
Method Noise set

AD AE AF BD BE BF CD CE CF Ave. ACE BDF CDF Ave.
MVDR -0.75 -0.41 -1.22 0.76 1.27 -0.05 -0.32 0.01 -0.90 -0.18 -0.57 0.00 0.02 -0.18
DUET 2.15 2.63 3.24 2.49 2.63 2.93 0.39 0.61 1.29 2.04 1.64 2.35 1.14 1.71
TFS w/o PE 4.97 5.37 4.95 4.99 4.99 5.44 3.69 4.02 3.72 4.68 3.80 4.04 3.21 3.68
TFS w/ PE 5.79 6.51 6.41 5.85 6.26 6.04 4.26 4.75 4.85 5.64 5.10 5.37 4.33 4.93

(b) SIR improvement [dB]
MVDR -0.18 -0.82 -0.65 1.59 2.37 -1.15 -0.19 0.80 -0.44 -0.91 -0.47 1.30 0.76 -0.84
DUET 4.02 2.63 4.82 5.11 2.63 4.68 2.14 1.84 2.87 3.41 3.56 4.61 3.43 3.87
TFS w/o PE 8.71 8.93 8.39 8.73 8.42 9.53 6.41 6.59 6.75 8.05 7.28 8.45 6.57 7.43
TFS w/ PE 8.62 9.71 9.56 7.44 9.47 9.47 6.04 7.03 7.25 8.29 7.72 8.63 6.65 7.67

AD AE AF BD BE BF CD CE CF Ave. ACE BDF CDF Ave.
from interferers A to C and another from interferers D to F as
noise signals. Additionally, we investigated the performance
using the noise sets ACE, BDF, and CDE as a case of includ-
ing three interferers. For each of the cases, we set the number
of spatial filters K to N − 1. As the target signal, we used
Japanese male/female and English male/female speech (i.e.,
there were four types of target signal), whose DOA was 90◦.
The SNR between the target signal and each interferer sig-
nal was set to 0 dB. We used objective criteria, namely, the
signal-to-distortion ratio (SDR) and signal-to-interference ra-
tio (SIR) [18] to quantify the results. A concise representation
of the results was obtained by averaging these criteria over the
target speech and the initialization of the spatial filters. Here,
the reference signal was the source image, i.e., the noise-free
reverberant speech signal.

4.2. Results and discussion

The SDR and SIR are shown in Table 2 for each noise set. The
MVDR, which has the signal-dependent spatial filter w(ω),
can suppress only one interferer in each frequency bin; thus,
it failed in speech enhancement. The proposed TFS-MVDR
shows a performance superior to that of DUET regardless
of the interferer DOA. Additionally, the performance is
close to that of conventional TFS-MVDR even though the
proposed TFS-MVDR does not require the pre-estimation,
which the conventional TFS-MVDR requires. Considering
these results, it can be concluded that our proposed TFS-
MVDR improves the speech enhancement performance in an
underdetermined noisy environment.

Figures 2(a)–(d) show examples of the results of speech
enhancement by the proposed TFS-MVDR. As shown in
Fig. 2(a), the selected beamformer switches frequently in
the TF plane. However, the proposed TFS-MVDR basically
satisfies the linear constraint in (11); thus, no distortion due
to the switching of the beamformers occurs. The enhanced
signals y1 and y2 are shown in Figs. 2(b) and (c), respectively,
and the final output y of the proposed method, which is the
sum of y1 and y2 (see (18)), is shown in Fig. 2(d).

The set of colored TF bins in Fig. 2(a) contains interferer
k (k = 1 (blue), k = 2 (red)) regardless of the target. There-
fore, each of the sets is composed of the target and only the
interferer k. The beamforming using a signal represented by
each of these sets is thus performed under the determined con-
dition. Here, note that the output signal yk has only a part

(a) (b) (c) (d)

Fig. 2: Results of speech enhancement by the proposed TFS-
MVDR. (a): TF mask mk indicating the selected beamformer
(blue: k = 1, red: k = 2), (b) and (c): y1 and y2 (see (17)),
respectively, (d): enhanced speech y (y = y1 + y2, see (18))

of the target because it is computed using the set of TF bins
whose mk(ω, t) = 1. Moreover, yk and each of the other
enhanced signals yk′ are completely disjointed [14]. The en-
hanced signal y, which is the sum of yk, thus suppresses both
the interferers and the target is restored completely.

In this experiment, we used time-invariant spatial fil-
ters wk(ω), whereas the MVDR beamformer can construct
a time-variant spatial filter w(ω, t). Thus, our proposed
method can also do this. With time-variant spatial filters
wk(ω, t), we expect that the proposed method will work well
in time-varying environments.

5. CONCLUSIONS

In this paper, we have proposed TFS of the MVDR beam-
former as a new method of underdetermined speech enhance-
ment using two microphones, which is an extension of the
conventional MVDR beamformer. This method is also an ex-
tension of conventional TF masking and can be considered as
a combination of beamforming and TF masking.

We demonstrated the effectiveness of the proposed method
by performing an experiment in a reverberant environment.
The proposed method showed high performance regardless
of the interferer DOA and was always superior to the con-
ventional methods used for comparison in terms of speech
enhancement performance.
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