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ABSTRACT
We propose an efficient iterative method to estimate a sub-
sample time delay between two signals. We formulate it
as the optimization problem of maximizing the generalized
cross correlation (GCC) of the two signals in terms of a con-
tinuous time delay parameter. The maximization is carried
out with an auxiliary function method. First, we prove that
when written as a sum of cosines, the GCC can be lower
bounded at any point by a quadratic function. By repeat-
edly maximizing this lower-bound, an alternative update al-
gorithm for the estimation of the time delay is derived. We
follow through with numerical experiments highlighting that
given a reasonable initial estimate, the proposed method con-
verges quickly to the maximum of the GCC. In addition,
we show that the method is robust to noise and attains the
Cramér–Rao lower bound (CRLB).

Index Terms— Time delay estimation, time difference
of arrival, generalized cross correlation, auxiliary function,
majorization-minimization

1. INTRODUCTION

Audio array signal processing uses multiple microphones
and exploits spatial cues for improved processing. Popular
applications of microphone arrays include speech enhance-
ment, source localization and separation [1]. Spatial cues
come in two flavors: variations in amplitudes and time
delays at different microphones. The time delay, or equiv-
alently, phase difference between channels, is particularly
important and underpins several important techniques in lo-
calization [2, 3], resampling [4], and synchronization [5].
For these, any improvement in time delay estimation directly
translates to better performance.

A naive estimate of the time delay between two sampled
signals is given by the location of the maximum of their dis-
crete cross correlation (CC) [6]. Without further process-
ing, the accuracy of this method is limited by the sampling
frequency. For compact arrays, this can be a serious prob-
lem. For example, the maximum time difference of arrival
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(TDOA) for two microphones spaced by 4 cm is less than
0.12ms, i.e., less than 2 samples at 16 kHz. Clearly, sam-
ple level accuracy is insufficient for many important appli-
cations, not just in audio processing, but also, for example,
sonar [7], radar [8], or reflection seismology [9].

A popular method for time delay estimation is based on
the generalized cross correlation (GCC) [10, 11], where the
estimate is given by the location of its maximum. Apply-
ing interpolation in the vicinity of the maximum is effective
to attain sub-sample estimates. Various schemes have been
proposed, for example, parabolic [12] and Gaussian curve
fitting [13], among others [14–16]. Yet another interpolation
method is zero padding in the frequency domain, which cor-
responds to Dirichlet kernel interpolation [17] of the GCC.
The ratio of non-padded to padded signal lengths is the at-
tainable sub-sample accuracy. Finally, it is possible to try
to find the maximum of the continuous GCC directly. For
band-limited signals, following the Nyquist-Shannon sam-
pling theorem [18, 19], the continuous GCC is obtained by
sinc-interpolation of its discrete counterpart. Its maximiza-
tion is a non-convex problem with no known closed-form
solution. Nevertheless, a locally optimal solution can be
found with a search algorithm such as the golden-section
search (GSS) [20]. GSS-based estimation searches the maxi-
mum (or minimum) of a unimodal function by narrowing the
interval where the maximum value is known to exist.

In this paper, we propose a new method for sub-sample
time delay estimation based on maximizing the continuous
GCC via the iterative maximization of an auxiliary function,
which is also known as majorization-minimization (MM)
method [21]. We first show that the objective function can
be globally bounded by a quadratic auxiliary function. This
auxiliary function can then be repeatedly maximized for
guaranteed convergence to a local maximum. We eval-
uate the method through numerical experiments and find
that when initialized in the vicinity of the true maximum,
it converges there in only a few iterations. We confirm
that the proposed method achieves the Cramér–Rao lower
bound (CRLB) in the presence of additive Gaussian noise
and evaluate its performance on reverberant signals. Com-
pared to GSS-based estimation, we find that the proposed
method typically converges in fewer iterations.
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The rest of this paper is organized as follows. Section 2
formulates the problem and sets notation. The algorithm is
described in Section 3. Numerical experiments and their re-
sults are the topic of Section 4. Section 5 concludes.

2. PROBLEM FORMULATION

Let xn and yn be real discrete signals. The GCC of xn and
yn is written as

Φ(xy)(t) =
1

N

N/2∑
k=−N/2+1

WkS
(xy)
k ej2πkt/N , (1)

where k is a discrete frequency index and S
(xy)
k is the cross

spectrum of xn and yn. The variable Wk ∈ R, Wk ≥ 0,
is an arbitrary weight function. Finally, t ∈ R denotes the
continuous time delay between xn and yn.

The GCC [10, 11] is a well-known method for estimat-
ing the discrete time delay t that maximizes (1), and suitable
weight functions Wk have been proposed, e.g., GCC-phase
transform (PHAT) and GCC-smoothed coherence transform
(SCOT);

WPHAT
k = |S(xy)

k |−1, W SCOT
k =

(
S
(xx)
k S

(yy)
k

)− 1
2

. (2)

The GCC with Wk = 1 is equivalent to the ordinary CC.
In typical implementations, the above GCC is only computed
at discrete time delays given by the sampling frequency Fs of
the input signals, i.e. t ∈

{
k
Fs
| k = −N

2 + 1, . . . , N
2

}
. To

improve the accuracy, it is necessary to lift this restriction.
We consider finding a continuous variable t ∈ R maxi-

mizing (1), which we can rewrite as a sum of cosines using
the conjugate symmetry of S(xy)

k ,

Φ(xy)(t) =

N/2∑
k=0

Ak cos(ωkt+ ϕk), (3)

where Ak = βk

N |WkS
(xy)
k |, ϕk = ∠S(xy)

k , ωk = 2π k
N , and

β0 = βN/2 = 1, and βk = 2 for k ̸∈ {0, N/2}. Our goal is
thus to compute the sub-sample accuracy time delay estimate

t̂ = argmax
t∈R

Φ(xy)(t). (4)

Unfortunately, there is no closed-form solution to this opti-
mization problem. Since Φ(xy)(t) denoted by the summation
of the sinusoids, is a strictly unimodal function in short inter-
val, the GSS [20] can find the peak. In practice, Φ(xy)(t) is an
unimodal function in the vicinity of its maximum, and thus,
the GSS [20] can be applied. A drawback of this method is
that it requires an initial interval guaranteed to contain the
maximum. Concretely, the left and right side of the interval

must be chosen to the increasing and decreasing parts of the
unimodal range around the optimum, respectively.

In this paper, we solve the optimization problem of max-
imizing the objective function (3) using an auxiliary function
that has a closed-form solution. It is then only required that
the initial estimate falls in the basin of attraction of the true
maximum, which is usually the case. Better initial estimation
usually leads to faster convergence.

3. SUB-SAMPLE TIME DELAY ESTIMATION
USING AUXILIARY FUNCTION

The auxiliary function method (also known as MM algorithm
[21]) is a well-known due to the expectation-maximization
and various other algorithms [22, 23]. Adapted to our prob-
lem, we would like to find an auxiliary function Q(t,θ) such
that

• Φ(xy)(t) ≥ Q(t,θ) for any t and θ,
• For any t0, ∃θ0 = f(t0) such that Φ(xy)(t0) = Q(t0,θ0),

where θ = (θ0, θ1, · · · , θN/2) are auxiliary variables. Pro-
vided such a Q(t,θ) exists, and given an initial estimate t̂0,
the following sequence of updates is guaranteed to converge
to a local maximum

θ(ℓ) = f(t̂(ℓ)), t̂(ℓ+1) = argmax
t∈R

Q(t,θ(ℓ)), (5)

where ℓ is the iteration index.

3.1. Quadratic Auxiliary Function for Continuous GCC

This section provides an auxiliary function for Φ(xy)(t).

Theorem 1 The following is an auxiliary function for Φ(xy)(t),

Q(t,θ) =

N/2∑
k=0

−Ak

2
· sin θk

θk
(ωkt+ ϕk + 2nkπ)

2 + C,

(6)

where C is a constant term that does not include t, and nk ∈
Z is such that |ωkt+ϕk+2nkπ| ≤ π. The auxiliary variables
are θk and nk and Q(t,θ) = Φ(xy)(t) when

θk = ωkt+ ϕk + 2nkπ. (7)

This theorem is a direct consequence of the following in-
equality for a cosine function, which is of general interest.

Proposition 1 Let |θ0| ≤ π. For any real number θ, the
following inequality is satisfied

cos θ ≥ −1

2

sin θ0
θ0

θ2 +

(
cos θ0 +

1

2
θ0 sin θ0

)
. (8)

When |θ0| < π, equality holds if and only if |θ| = |θ0|. When
|θ0| = π, equality holds if and only if θ = (2n+1)π, n ∈ Z.
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Proof: Let

f(θ) = cos θ +
1

2

sin θ0
θ0

θ2 −
(
cos θ0 +

1

2
θ0 sin θ0

)
. (9)

Then, we have

f ′(θ) = − sin θ +
sin θ0
θ0

θ = −θ
(
sin θ

θ
− sin θ0

θ0

)
. (10)

We separately consider the following three cases.
Case 1: 0 < |θ0| < π
Because sin θ/θ is monotonically decreasing in 0 ≤ θ ≤ π,

f ′(θ)

 < 0 (0 ≤ θ < |θ0|),
= 0 (θ = |θ0|),
> 0 (|θ0| < θ ≤ π).

(11)

It thus appears that f(θ) attains its minimum at |θ0|. More-
over, f(θ0) = 0 and thus f(θ) ≥ 0 in 0 ≤ θ ≤ π. Since f(θ)
is an even function, its minimum value in−π ≤ θ ≤ π is also
0. Because cos θ is periodic but −θ2 is not, f(θ + 2nπ) >
f(θ) for any −π ≤ θ ≤ π and integer n ̸= 0. Therefore,
f(θ) ≥ 0, with equality if and only if |θ| = |θ0|.
Case 2: θ0 = 0
In this case, for 0 ≤ θ ≤ π, we have

f ′(θ)

{
= 0 (θ = |θ0| = 0)
> 0 (|θ0| < θ ≤ π)

, (12)

which means f takes its minimum value at f(0) = 0 in−π ≤
θ ≤ π. Similarly to case 1, we obtain f(θ) ≥ 0, with equality
if and only if θ = 0.
Case 3: θ0 = π or θ0 = −π
In this case, f(θ) = cos θ + 1. Therefore f(θ) ≥ 0, with
equality if and only if θ = (2n+ 1)π for any n ∈ Z.

Then, Theorem 1 is proved as follows.
Proof of Theorem 1: Because cos(ωkt + ϕk) = cos(ωkt +
ϕk+2πnk) with nk ∈ Z, and because Ak ≥ 0, we can apply
Proposition 1 separately to each term of the sum in (3).

3.2. Derivation of Auxiliary Function and Update Rules

Since Q(t,θ) is a quadratic function, it is easily maximized
with respect to t by putting its derivative to zero

∂Q

∂t
= −

N/2∑
k=0

Akωk
sin θk
θk

(ωkt+ ϕk + 2nkπ) = 0. (13)

Therefore, the maximizer is

t̂ =

∑N/2
k=0 Akω

2
k(sin θk/θk)(−(ϕk + 2nkπ)/ωk)∑N/2
k=0 Akω2

k(sin θk/θk)
. (14)
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Figure 1: Left: the value of objective function via the pro-
posed method over initial values. Different curves represent
different values of the initial time delay estimate, taken every
3 samples from 2 to 29. Right: objective function.

Now under the condition for equality (7), we can substitute
ϕk + 2nkπ = θk − ωkt and obtain the final update rules

n
(ℓ)
k ← argmin

n∈Z

∣∣∣ωkt
(ℓ) + ϕk + 2nπ

∣∣∣ , (15)

θ
(ℓ)
k ← ωkt

(ℓ) + ϕk + 2n
(ℓ)
k π, k = 0, . . . ,

N

2
, (16)

t(ℓ+1) ← t(ℓ) −

∑N/2
k=0 Akω

2
k

(
sin θ

(ℓ)
k /θ

(ℓ)
k

)
θ
(ℓ)
k

ωk∑N/2
k=0 Akω2

k

(
sin θ

(ℓ)
k /θ

(ℓ)
k

) . (17)

Interestingly, the second term of (17) is a weighted sum of
the auxiliary variables scaled by the frequency, i.e., θ(ℓ)k /ωk.

4. NUMERICAL EXPERIMENTS

To evaluate the effectiveness of the proposed method, we in-
vestigated the performance of the sub-sample time delay es-
timation in terms of the convergence in subsection 4.1 and
4.2 and robustness to noise in subsection 4.3.

4.1. Empirical Convergence

In this experiment, we created stereo observations with sim-
ulated time delays ranging from −5 to 5 samples and added
white Gaussian noise to each microphone with signal-to-
noise ratios (SNRs) from −10 dB to 30 dB. We used four
different target signals, Japanese male/female and English
male/female speech, sampled at 16 kHz. We evaluated the
performance of the proposed method compared to that of
conventional GSS-based estimation [20]. The proposed
method was initialized with the sample maximizing the dis-
crete GCC. The initial interval for GSS was the two samples
around that maximum. The weight Wk of the GCC was set
to 1 for all frequencies.

Figure 1 shows the convergence of the objective function
with the proposed method for different initial values with the
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Figure 2: Left: TDOA estimates in the reverberant environ-
ment with the SNR of 10 dB; ◦, DOA is 30◦; ×, DOA is
70◦; ∗, DOA is 315◦. Right: value of the objective function
corresponding to respective DOAs.

ground truth at 2.0996 sample. The SNR is 10 dB. We set
the initial value of the proposed method to every 3 samples
form 2 to 29. This shows that if the initial value is close
enough to the ground truth, between −20 to 22 samples in
this figure, the proposed method will converge to the global
maximum. Here, the error was 0.035 sample. Moreover,
we empirically confirm the guaranteed monotonic increase of
the objective function of the proposed method for any initial
value. In addition, the better the initial estimate, the faster
the convergence is. In contrast, GSS is initialized with an
interval that must be unimodal and contain the maximum.
Given a better initial estimate, it is not clear how to produce
a narrower such interval to hasten convergence, especially in
noisy conditions.

4.2. Convergence in Reverberant Environment

Next, we convolved a signal with room impulse responses
simulated by the pyroomacoustics Python package [24]. We
used the same experimental conditions as in subsection 4.1
except for the time delay and reverberation time. We esti-
mated the TDOA for three directions of arrival (DOAs) at
30◦, 70◦, and 135◦, with a reverberation time of 300ms. The
distance between the microphones was 4 cm and the source
placed 1.5m away. We averaged the resulting TDOA esti-
mates over different speakers.

Figure 2 shows the TDOA estimates by the proposed
method and GSS over iterations. Markers ’◦’, ’×’, and ’∗’
denote the DOAs of 30◦, 70◦, and 135◦, respectively. Al-
though the TDOA estimation in reverberant environment is
a difficult problem [25], both the proposed method and GSS
converge. Considering these results, it can be concluded
that our proposed method shows enough performance as an
alternative method for sub-sample time delay estimation.

4.3. Robustness to Noise

In this experiment, we compare the performance of the GSS
and proposed methods with respect to the initial value and
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Figure 3: RMSE of TDOA estimates in noise.

the number of iterations in the presence of noise. For this
purpose, we use the same speech signal as in subsection 4.1
and a copy randomly delayed by t ∼ U [0, 1]. The two sig-
nals are corrupted by additive white Gaussian noise at SNR
ranging from −12 dB to 40 dB. Given the input signal and
the variance of the noise σ2, the CRLB for t̂ is

Var{t̂} ≥

8π2

N/2∑
k=0

(|Sk|2/(Nσ2))2

1 + 2(|Sk|2/(Nσ2))
(kFs/N)2


−1

,

where Sk is the k-th point of the discrete Fourier transform
(DFT) of the input signal, and Fs is the sampling frequency.
We compare two initialization schemes: from the location of
the peak of the discrete GCC, and from the result of parabolic
interpolation around it. The experiment is repeated for 100
realizations of the delay and the noise.

Figure 3 shows that both GSS and the proposed method
reach the CRLB as the SNR increases. However, the num-
ber of iterations needed vary. At low SNR, GSS performs
well with 5 iterations, but at high SNR at least 15 iterations
are needed to reach the CRLB. This result does not depend
on the initialization. In contrast, 5 iterations are always suffi-
cient for the proposed method, provided a good enough start-
ing point such as given by parabolic interpolation.

5. CONCLUSIONS

This paper presents efficient iterative update rules that max-
imize the continuous GCC for sub-sample time delay esti-
mation based on auxiliary function technique. The objec-
tive function, that is, the continuous GCC is represented as
a sum of sinusoids and a quadratic auxiliary function can be
derived. By updating the time delay estimates and auxiliary
variable alternatively, the objective function is monotonically
maximized. This optimization procedure should extend to
multichannel signals by designing an appropriate objective
function, whereas the conventional GSS can only be applied
to pairs of signals.

In the experiments, we confirmed that the derived update
rules achieve faster convergence compared to GSS and at-
tains the CRLB. We thus conclude that the proposed method
could be an alternative method for sub-sample time delay es-
timation.
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